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The transition to  turbulence in BBnard convection in a layer of air bounded by rigid 
conducting walls is studied by numerical solution of the three-dimensional time- 
dependent Boussinesq equations. The wavy instability of rolls is compared with 
available experimental and theoretical results. The subsequent transition to chaotic 
convection is shown to occur for Rayleigh numbers larger than about 9000. The role 
of symmetry-breaking perturbations in the production of chaos is clarified. 

1. Introduction 
The sequence of instabilities leading to turbulence in thermal convection between 

flat horizontal plates has been studied extensively. One of the nice features of this 
problem is that irregularity develops more slowly as a function of the driving force 
than it does in such shear flows as pipe or channel flow. However, it is also well known 
(Willis & Deardorff 1970; Krishnamurti 1973; Clever & Busse 1974, 1978; Busse & 
Clever 1979; Ahlers & Behringer 1978, 1979; Gollub & Benson 1980) that even the 
qualitative nature of the instabilities leading from a state of steady convective flow 
to a state characterized by a broad frequency spectrum depends on a number of 
factors such as the Prandtl number and the geometrical parameters of the container 
in which the experiments are conducted. 

One must be cautious about using the word ‘turbulent’ to describe these freely 
convecting flows since this word is usually associated with high-Reynolds-number 
flows, such as fully developed turbulent pipe flow, in which the energy is distributed 
over a large range of spatial and temporal scales. The kind of convective flows which 
we shall discuss in this paper typically have Reynolds numbers (based on the maximum 
velocity and the t’hickness of the convection layer) of order 10-100, and have over 
99 yo of their kinetic energy contained in a single octave of wavenumbers. Thus one 
should not confuse the kind of weak turbulence which we shall discuss with, for 
example, the kind of strong turbulence encountered in pipe flow and analysed in the 
classic experiments of Laufer (1 954). Nevertheless, the convective processes studied 
here are of interest since they give an example of one way fluid flow can become 
chaotic. 

The results presented below tend to  support the theory of Ruelle & Takens (197 1 )  
about the maximum number of independent, oscillatory inodes which a system can 
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sustain without generating broadband frequency spectra. It is worth while to describe 
this t,heory briefly in order to clarify the relationship between their work and labora- 
tory experiments. Ruelle & Takens postulate a flow that undergoes a sequence of 
oscillatory instabilities as a parameter (e.g. a Reynolds or Rayleigh number) is in- 
creased. It is assumed that at low values of the parameter the only stable state of the 
system is a steady (laminar) flow. As the parameter is increased beyond some critical 
ralue an instability occurs in which an oscillatory mode grows exponentially. Assuming 
that nonlinearit,y has a stabilizing effect, this growing mode will eventually saturate 
and a time-periodic flow mill result. One can then imagine that as the parameter is 
increased stmill further a second oscillatory mode appears and also saturates at some 
finite amplitude. Since the system is nonlinear, one expects the velocity or temperature 
at a given point to contain the harmonics of the two frequencies, as well as sum and 
difference frequencies. This is an example of a quasiperiodic system since the frequency 
spectrum consists exclusively of delta functions superimposed on whatever instru- 
mental noise may be present in the given experiment. 

However, if a third oscillatory mode appears when one varies the driving parameter 
t o  a higher value, Newhouse, Ruelle & Takens (1978) argue that the frequency spec- 
trum should typically contain broadband frequency excitations. They consider 
motion on a three-torus (quasiperiodic motion with three basic frequencies) and then 
imagine introducing a small nonlinear coupling between the three oscillators. One 
can visualize such a sysbem as a system of three harmonic oscillators with different 
natural frequencies which are initially uncoupled. They argue that it is very likely 
that even very weak nonlinear couplings will produce broadband components in the 
frequency spectrum of such a system. It should be pointed out that the fact that 
nonlinearly coupled oscillators typically have regions of chaotic motion even for 
systems of 14 degrees of freedom (three real variables) has been known since the work 
of Chirikov (1959) on Hamiltoiiian systems. More recently, Ford & Lunsford (1970) 
have shown that the introduction of arbitrarily weak couplings produces regions of 
chaos for a Hamiltonian system of three resonant oscillators. 

It should be noted that the Ruelle-Takens theory is at variance with the tradi- 
tional view expounded by Landau (Landau & Lifshitz 1959) in which quasiperiodic 
flows with arbitrarily large numbers of frequencies arise in a discrete manner as the 
forcing parameter increases. 

As noted by McLaughlin & Martin (1975), the Ruelle-Takens theory is not applic- 
able to the transition to turbulence in many flows of practical interest, including pipe 
or channel flows, in which nonlinearity tends to destabilize perturbations of the laminar 
flows. For example, according to linear theory, plane Poiseuille flow is stable at 
Reynolds numbers (based on the half-width of the channel) smaller than 5772 (Orszag 
1971). However, Herbert (1977) has shown numerically that plane Poiseuille flow is 
unstable to finite-amplitude two-dimensional perturbations at Reynolds numbers 
low as roughly 2900. Using three-dimensional simulations, Orszag & Kells (1980) 
and Orszag & Patera (1981) found the threshold for transition to be roughly 1000, 
which is in good agreement with laboratory experiments (see Orszag & Kells 1980). 
Thus nonlinear effects may drive these flows into states described by a broad fre- 
quency spectrum without the kind of intermediate stages envisaged by the Ruelle- 
Takens theory. Similar nonlinear instabilities appear to hold in most of the classical 
shear flows. 
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In  order to find a flow that may satisfy the assumptions made in the Ruelle-Takens 
theory, one must find a flow that exhibits oscillatory behaviour in some parameter 
range. Thermal convection in air and other low-Prandtl-number fluids is such a flow 
(Willis & Deardorff 1970; Krishnamurti 1973; Ahlers & Behringer 1978, 1979; Gollub 
& Benson 1980). Willis & Deardorff performed their experiments in a large-aspect- 
ratio rectangular container with horizontal and vertical dimensions of 80 cm and 
2.54 cm respectively. They found that for Rayleigh numbers smaller than 5800 the 
convection was steady except for slow undulations and that the pattern consisted of 
approximately two-dimensional rolls. However, when the Rayleigh number exceeded 
5800 they detected three-dimensional wavy oscillations in the flow both visually and 
with a thermocouple. This finding was confirmed by Krishnamurti (1973), who found 
the threshold Rayleigh number for oscillations in air to be 5600. Clever & Busse (1974) 
performed a linear stability analysis for three-dimensional perturbations on two- 
dimensional rolls and found that for the Prandtl number of air wavy oscillations 
develop a positive growth rate when the Rayleigh number exceeds 6000, if the roll 
wavelength is chosen to match the experimental data of Willis, Deardorff & Somerville 
(1972). 

Willis & Deardorff found that, although the time dependence of the convection is 
roughly periodic a t  Rayleigh numbers on the order of 9000, it becomes increasingly 
irregular as the Rayleigh number is increased, and well-defined oscillations are no 
longer discernible when the Rayleigh number is of order 30000. However, they did 
not report frequency power spectra for the temperature or velocity fields in their 
experiments, so it is impossible to make a detailed comparison between their results 
and the Ruelle-Takens theory. 

Frequency spectra were measured by Gollub & Benson (1980) in their study of 
convection in fluids having Prandtl numbers between 2.5 and 5.0 and contained in 
small-aspect-ratio cells (16-42 by27-72 by7-90mm highand 14.66 by28085 by 11-94 mm 
high). They found several different routes by which convective flows can become 
turbulent. In  some cases they found that flows with broad spectra were preceded in 
Rayleigh number by quasiperiodic flows with two or three frequencies. I n  another 
case they found that a succession of subharmonic (periodic-doubling) bifurcations 
preceded the onset of broad spectra. The fact that  they were able to find quasi- 
periodic flows with three distinct frequencies which did not contain broad spectral 
components cannot fairly be taken as a disproof of the Ruelle-Takens theory, since 
Ruelle & Takens only claim that it is probable that quasiperiodic flows with three 
frequencies will be ruled out by the nonlinearity in a system. The Ruelle-Takens 
theory is probably most usefully interpreted as a rule of thumb that broadband 
components will start to appear after a small number of oscillatory modes have 
developed in a system. However, in all our simulations reported below, solutions 
containing three or more distinct frequencies do contain broad spectral components. 

In this paper, we report simulations of transitional thermal convection in air with 
the goal of identifying the modes that are responsible for the appearance of broadband 
spectral components. Specifically, we have been able to establish a link between the 
breakdown of certain spatial symmetries and the onset of chaos. Of course, one can 
also look for changes in the spatial symmetries in the laboratory. However, it would 
be difficult, if not impossible, to determine whether those changes are the cause of the 
chaos or whether the flow would still be chaotic even if thc symmetries were somehow 
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enforced. The advantage of the computer in this respect is that it enables one to study 
the behaviour of the solutions with the symmetry-breaking variables set equal to 
zero. By doing this, we have found that the symmetry-breaking modes can hasten the 
onset of chaos. 

A number of other workers have studied thermal convection using numerical 
simulation. The most immediately relevant work is that of Lipps (1976), who studied 
oscillatory convection in air using high-resolution finite-difference techniques. Lipps 
simulated the flow with Rayleigh numbers of 6500,9000 and 25 000. When the Rayleigh 
number was 6500 the flow evolved into a time-periodic state. The flow contained at  
least two frequencies when the Rayleigh number was 9000, and the flow appeared to 
be highly chaotic when the Rayleigh number was 25000. Lipps did not integrate far 
enough in time to enable him to  analyse the frequency content of the flows that he 
simulated. 

Toomre, Gough & Spiegel (1977) found that, provided an  adequate amount of 
vertical resolution was used, models of convection in which a single horizontal mode 
was retained exhibited no time dependence. Marcus (1981) has found a similar result 
in a study of convection in a spherical geometry, and he has also shown that, if 
several azimuthal modes are retained, a threshold for time dependence exists, but 
that  this threshold tends to  increase as the azimuthal resolution is increased (i.e. 
inadequate azimuthal resolution can give spurious time dependence). Curry et al. 
( 1982) find that inadequate spatial resolution of two-dimensional convection gives 
spurious time dependence, while adequately resolved two-dimensional flows exhibit 
much less time dependence than real three-dimensional flows. Also, Orszag & Kells 
(1980) found that simulations with inadequate horizontal resolution also tend to yield 
spuriously low thresholds for instability of plane Poiseuille flow. Thus it is important 
to  check carefully that both the horizontal and vertical resolution are sufficient before 
concluding that a simulation that exhibits chaotic behaviour implies that the corres- 
ponding exact solution of the Boussinesq equations is chaotic. 

I n  Q 2, we give a brief discussion of our numerical techniques. I n  Q 3, we study the 
possible symmetries of BBnard convection. In  Q 4, we present our results for the onset 
of chaos in air and the role of symmetry-breaking perturbations in this process. 

2. Numerical methods 
I n  our three-dimensional simulations, we impose rigid no-slip boundary conditions 

on the two surfaces of the convection layer, and periodic boundary conditions in the 
two horizontal directions. The temperature is assumed to  be constant on the two 
surfaces. The repetition lengths in the two horizontal directions are set equal to the 
experimental wavelengths reported by Willis & Deardorff (1970) and Willis et al. 
(1972). The fluid is assumed to satisfy the Boussinesq conditions, so that the equations 
of motion are 

(2.1) 

(2.2) 

v . v  = 0, (2.3) 

av - = v x w - v n  + Pr(v2v +as), 
at 

ae 
- + v . v e  = Raw+V28, 
at 
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where v = (u, v ,  w) is the velocity field. o = V x v is the vorticity, 7r = p + +!.I2 is the 
pressure head, with p the pressure, and 0 is the deviation of the temperature from the 
conduction profile. 

In (2.1)-(2.3), distances and times have been made dimensionless in terms of the 
thickness H of the layer, and the vertical thermal diffusion time T~ = H 2 / ~ ,  where K 

is the thermal diffusivity. Here 0 is made dimensionless in terms of the temperature 
difference AT between the two plates. The parameter Ra is the Rayleigh number and 
Pr is the Prandtl number: 

geH3AT 
Ra=-, (2.4) 

V K  

where g is the acceleration due to gravity, E is the coefficient of thermal expansion, 
and v is the kinematic viscosity. The Prandtl number of air is 0-71 and we have used 
this value in all of the simulations which are discussed below. 

The velocity and temperature fields are expanded using Fourier series in the x- and 
y-directions, and a Chebyshev polynomial series in the vertical z-direction. Thus the 
fields are represented as 

P 

P 

8(x, y, x, t )  = x x &m, n , p ,  t )  e2nl(~lX+nylY)Tp(2~), (2.7) 
Iml <*M In1 <#N p = o  

where X is the wavelength of the rolls and Y is the wavelength of the waves that 
develop on the rolls. Here T,,(z) is the Chebyshev polynomial of degreep. Also, M ,  N ,  P 
are spectral cutoffs typically chosen to be M = 16, N = 16, P = 16 in the calculations 
reported below. 

In all the simulations reported in this paper, X is chosen equal to the experimental 
value of the roll wavelength, as reported by Willis et al. (1972). The z-co-ordinate 
varies between - 4 and + +. Equations for the spectral components of the fields are 
obtained using the pseudospectral method described by Orszag & Kells (1980). 

One essential feature of the present code is the use of Richardson extrapolation to 
reduce time-stepping errors. Time stepping is performed by a fractional-step (splitting) 
method in which the fractional steps involve (i) the nonlinear advection and linear 
buoyancy terms; (ii) the pressure to enforce incompressibility; and (iii) the viscous 
terms to enforce the rigid boundary conditions. Since the operators involved in these 
three substeps do not commute, time-stepping errors O(At) result even if the local 
error in each substep is smaller. Local Richardson extrapolation reduces this error 
substantially: If vl(At) is the first-order result that obtains from splitting then 

(2.8) VZ = 2v1(+At) - vl(At) 

removes the first-order error?. 
The code has been tested in several ways. First, the time evolution of small-amplitude 

perturbations of the pure-conduction state (no motion) has been computed using the 

t Note added in proof: the error in v, is O(At3). 
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Method 

Exact 
No Richardson 
extrapolation 

Local Richardson 
extrapolation 

Rayleigh number 

At 3000 6000 10 000 

- 1.867 90 5.048 43 8.23029 
0.003 00 1.928 50 5.11124 8.294 74 
0.001 50 1.899 10 5.081 29 8.264 94 
o*ooo 75 1.883 77 5.065 27 8.248 30 
0.003 00 1.871 63 5.052 60 8.23341 
0.001 50 1.869 27 5.05008 8.231 85 
0.000 75 1.86840 5.049 05 8.23095 

I 
h > 

TABLE 1. Computed growth rates W(cr) for the most unstable mode as a function of time step 
(here we calculate B(a)  using M = 8, P = 16, tl = 2n/X = 1.5585) 

M P Nu 

4 8 3.286 
4 16 3.241 
4 32 3.240 

16t 1 s t  3.258t 

t Clever & Busse (1974). 

TABLE 2. Steady-state Nusselt numbers at Ra = 2000 

exact linear eigenfunctions (that evolve as egt) as initial conditions. The growth rate 
as computed from the time evolution of the perturbation is then compared with the 
exact eigenvalue, using various vertical resolutions P and time steps At. The results 
show that, for fixed time step At, the growth rate changes by less than 1 yo when P 
increases from 8 to 32 when Ra 5 20000. Also, as documented in table 1, without 
Richardson extrapolation in time, the error in the (large-P) growth rate 9 ( a )  behaves 
like At. Richardson extrapolation (2.8) at each time step reduces this error considerably. 

In order to check the accuracy of the Chebyshev series used for the vertical repre- 
sentation of the flow, we performed a number of two-dimensional simulations. In 
table 2, we give the values of the steady-state Nusselt number for M = 4 and P = 8, 
16 and 32, and compare our values with Clever & Busse's (1974) value for the same 
parameter values. Clever & Busse's value may be more accurate than ours since they 
used more horizontal resolution than we did, and their vertical resolution should be 
sufficient to give accuracy as good as ours. 

We used the linear stability results of Clever & Busse (1974) for three-dimensional 
perturbations as a further check of our code. Specifically, Clever & Busse found that, 
when they used the experimental results of Willis & Deardorff (1970) for X, the oscil- 
latory mode became unstable when Ra = 6000 and Y = 2.5 (the most unstable mode). 
Using these values for X and Y ,  we found that the wavy perturbation was damped for 
Ra = 6100 and unstable for Ra = 6200. Our results are summarized in table 3. The 
small discrepancy between our value for the threshold and the value found by Clever 
& Busse is almost certainly due to the low horizontal resolution used in our simulations 
( M  = 4). Our simulations used P = 32 for the vertical resolution. 

Finally, several tests of the horizontal resolution used in our simulations have been 
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Growth rate 
Rayleigh number X Y m4 ,f(4 

6100 2.85 2-6 - 0.13 23.0 
6200 2-88 2t6 0.084 23.0 

TABLE 3. Eigenvalues c near the oscillatory threshold found by full simulation 

V 

0 

2.5 

-40 
FIGURE 1. Effect of horizontal evolution on the time evolution of a velocity component for the 
run at Ra = 15000. Heavy curve: M = N = 8, P = 32, Light curve: M = N -- 16, P = 32. 

made at  the larger Rayleigh numbers. It has been found that simulations using 
M = N = 4 and P = 16 or 32 fail badly for Ra = 16 000 in that their time dependence 
is not even qualitatively correct. Noticeable qualitative differences between ilf = N = 8 
and ilf = N = 16 begin to develop for Ra of order 25 000. In  figure 1, we compare the 
time evolution of the y-component of velocity at a point in the middle of the convection 
layer for simulations using M = N = 8, P = 32 and M = N = 16, P =  32 with 
Ru = 15000. In these runs X = 3-18 and Y = 2.65. It can be seen that the two time 
evolutions are quite close except for a slight phase shift. This run provides a severe 
resolution test, as the rolls fip orientation in their time evolution. Similarly, we 
believe that the accuracy of all the simulations reported below is sufficient. While the 
' chaotic ' flows reported below may not be accurate in phase at large times, a qualitative 
application of the Anosov-Bowen shadow lemma (see Lanford 1982) suggests that the 
reduced data obtained from the numerical simulations are the exact reduced data for 
some modified initial flow close to that imposed in the calculation. 

It is important to emphasize the limitations imposed on our simulations by the 
assumption of periodic boundary conditions in the horizontal directions. The repetition 
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lengths are set equal to the wavelengths of the rolls and waves that were observed by 
Willis & Deardorff (1970). In doing so, all of the larger-wavelength (subharmonic) 
fluctuations which are apparently seen in experiments using large-aspect-ratio con- 
tainers are eliminated. Therefore it is not surprising that the behaviour that we find is 
qualitatively similar to the phenomena observed in small-aspect-ratio containem. 
On the other hand, it is dangerous to attempt a quantitative comparison with such 
experiments, since the effects of no-slip side walls are not included in our simulations. 
Also, with our horizontal periodic boundary conditions the effects of such instabilities 
as the skewed varicose instability (Busse & Clever 1979) are not accounted for. Their 
inclusion would require much larger horizontal repetition lengths and consequently 
significant loss of horizontal resolution, 

3. Flow symmetries 
There are several symmetries which are consistent with (2.1) and (2.2). For example 

suppose the convection takes the form of two-dimensional rolls aligned parallel to the 
y-axis. Then the flow has translational invariance in y, and the x- and z-components 
of velocity and the temperature satisfy the following reflection symmetries with 

(3.1) 
respect to x: u( - 5, 2, t )  = - u(z, 2, t ) ,  

w( - x, 2 ,  t )  = w(x, 2,  t ) ,  (3.2) 
e( - x,Z, t )  = qz, z, t ) .  (3.3) 

However, Clever & Busse (1974) have shown that these two-dimensional roll solutions 
become unstable to three-dimensional wavy perturbations when the Rayleigh number 
exceeds 6000. Clearly, this breaks the translational invariance in the y-direction. 
However, it also breaks the reflection symmetry in the x-direction. 

It is possible to set up a standing-wave solution in the y-direction by imposing the 
following reflection symmetries on the velocity and temperature fields : 

Numerical calculations show that these standing-wave solutions are time-periodic up 
to Ra = 25 000 approximately, and that the periods are in good agreement with those 
reported by Willis &, Deardorff (1970). However, the simulations show that these 
solutions are unstable with respect to travelling-wave disturbances that break the y- 
symmetries (see also Lipps 1976). 

In order to generate the symmetrized solutions, initial conditions are chosen that 
are consistent with the symmetries (3.4)-(3.7). These continuously yield finite- 
amplitude solutions with the desired symmetries that persist for at least two thermal 
diffusion times (which corresponds to roughly eight oscillation periods over the range 
of Rayleigh numbers where the standing-wave solutions are time-periodic). However, 
in long-time simulations (38 thermal diffusion times), the symmetry is broken by the 
end of the run. The source of the initial symmetry-breaking perturbations is round- 
off errors (of order in our runs on the CRAY-1); amplification rates for the 
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symmetry-breaking modes are such that these variables attain finite amplitudes in 
roughly five to ten thermal diffusion times for most of the Rayleigh numbers studied. 

One can impose a more subtle symmetry, which we shall refer to as 'spectral parity'. 
It is possible to find solutions that satisfy the following conditions on the modal 
indices : 

( 3 4  
(3.9) 

For example, two-dimensional rolls aligned parallel to t,he y-axis satisfy these spectral- 
parity conditions (Clever & Busse 1974) for Rayleigh numbers sufficiently close to the 
convective threshold. The oscillatory mode that bifurcates at  Ra = 6000 also satisfies 
spectral parity. 

However, for Ra > 9000, solutions that have spectral parity are unstable with 
respect to symmetry-breaking modes. Furthermore, the symmetry-breaking modes 
are important in the production of broadband frequency components. In  order to 
detect such modes, one can print out their values or one can test for a spatial sym- 
metry which fields satisfying spectral parity must possess. Specifically, it can easily 
be shown that, when spectral parity holds, in the middle of the convection layer 
(i.e. the plane z = 0) w and 8 are invariant under translations by +X in the x-direction, 
while u and v change sign. In Q 4, we present contour plots of the fields in the plane 
z = 0 in order to demonstrate the presence or absence of spectral parity. 

C(m, n , p ,  t )  = E(m, n,p, t )  = 0 unless m + p  is even, 

@(my n,p, t )  = 8(m, n , p ,  t )  = 0 unless nL +p is odd. 

4. Results 
Let us begin by reporting a series of simulations in which standing waves are 

established by imposing (3.4)-(3.7) on the initial conditions. As mentioned previously, 
for each Rayleigh number the periodicity length X was set equal to the experimentally 
measured roll wavelength reported by Willis et al. (1972). Willis & Deardorff (1970) 
observed that the, wavelength of the waves was approximately 0.7 that of the rolls 
in the vicinity of Ra = 9000. Therefore, in most of the standing-wave simulations w e  
assume Y = 0.7X (with X given by the experiments), even though experimental 
values are not available for Y except at  Ra = 9000. We also performed simulations 
with different values of Y at a few Rayleigh numbers in order to check that the 
motion is indeed not qualitatively different. 

In these standing-wave simulations, nearly steady two-dimensional rolls parallel 
to the y-axis are generated by using the eigenfunctions for the convective threshold 
as initial conditions with a finite amplitude and integrating for 76 (where 76 is the 
vertical thermal diffusion time). Then, a finite-amplitude three-dimensional distur- 
bance is introduced with the desired spatial symmetries. For Rayleigh numbers 
between 9000 and 25000, the motion typically becomes time-periodic in a time of 
order 7d. Integrating until 2-257d, there are about four cycles of periodic motion after 
the initial transient decays. In table 4 we give the periods for the standing-wave 
simulations and compare them with the experimental values obtained by Willis & 
Deardorff (1970). 

It was pointed out in Q 3 that the standing-wave solutions are unstable with respect 
to travelling-wave solutions. Willis & Deardorff observed both standing and travelling 
waves in their experiments. However, it should be pointed out that in their experi- 
ments both waveforms were of an intermittent character (both spatially and 
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Experimental period 
(Willie & Deardorff 

Rayleigh number X Y Calculated period 1970) 

9 000 
12 000 
16 000 
20 000 
25000 

3.56 2.48 
3.69 2.59 
3.81 2-68 
3-90 2.73 
4.00 2.80 

0.270 
0.255 
0.229 
0.220 
0.230 

0.28 
0.26 
0.21 
0.20 
0.19 

TABLE 4. Periods of standing-wave solutions 

temporally), and for this reason it is difficult to relate the instability of standing waves 
in our simulations to their experiments. Nevertheless, both the travelling- and the 
standing-wave solutions have periods that are in reasonably good agreement with 
the periods reported by Willis & Deardorff. 

Next, we report a series of long simulations (through 387d) for Rayleigh numbers 
6500, 9000, 10000, 12000, 15000, 25000 and 30000, with the goal of isolating the 
threshold for broadband frequency components and the role of symmetry-breaking 
modes in producing these components. In the first series of simulations that we shall 
discuss, nearly steady two-dimensional rolls are generated with their axes parallel 
t o  the y-axis, and a finite-amplitude three-dimensional disturbance that breaks both 
the y-symmetry and spectral parity is then introduced. Contour plots of the velocity 
and temperature fields reveal complex spatial patterns after three thermal diffusion 
times. However, by the end of the simulations travelling-wave patterns emerge. In 
figure 2, we plot isotachs of w in the middle of the convection layer (z = 0). These 
contours are made on the last time step of each simulation (which corresponds to 
different points in the oscillation cycle for each case). It should be noted that the 
plot for Ra = 6500 differs from the others in that it exhibits antisymmetry for trans- 
lations by i X  in the x-direction (the vertical direction on the plot). This indicates 
that the modes that violate spectral parity decay at Ra = 6500. However, at Ra = 9000 
and the higher Rayleigh numbers spectral parity is broken. 

In figure 3, we plot the time series for the y-component of velocity v at  the point 
x = tX, y = &Y and z = 0.354 for the last six thermal diffusion times of the long 
( 3 8 ~ ~ )  simulations (with the exception of figure 3 (f), which represents the last four 
thermal diffusion times for the simulation with Ra = 25000). The other components 
of velocity and the temperature at  various points in the middle of the layer ( z  = 0) 
do not always contain all of the major frequencies (e.g. a t  Ra = 6500 the odd frequency 
harmonics are not present for the u and w velocity components or temperatures 
recorded in the middle of the layer). However, it appears that every significant 
frequency that appears in the other dynamical variables also appears in the spectrum 
of v, so we concentrate attention on this latter spectrum. Notice that the flows at 
Ra = 6500 and 10000 are both time-periodic, while those at the other Rayleigh 
numbers are more complex. We do ncit understand completely why the run at  
Ra = 10000 is less random than that at  Ra = 9000, but it may be related to the roll 
re-orientation that is observed at  Ra = 12000 (see below). In figure 4 we plot the 
frequency power spectra for the same y-velocity component over the second half of 
the long simulations (i.e. 1974). By using only the second half of the time records, 
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X 

0 
X 

0 

0 0 Y 
FIGURE 2. Instantaneous isotachs of w in the midplane T/ = 0 for six Rayleigh numbers. (a)  
Ra = 6500; (b)  9000; (c) 10000; (d) 12000; (e) 15000; (f) 25000. The + signs indicate regions 
of positive w. 

it is possible to eliminate most transient effects on the spectrum. If one estimates a 
typical time scale for the time-dependence of the flows from the frequency at which 
the power spectrum has a maximum, one finds that the second half of the time records 
typically contain seventy or eighty oscillation periods. The low-frequency distortion 
in the spectra is produced by the convolution function used to eliminate the dis- 
continuity between the beginning and end of the time series. Note that it is the 
logarithm of the power spectrum that is plotted in figure 4. 

It should be noted that, while the relation Y = 0.7X is used for the simulations 
with Ra = 6500, 9000, 10000 and 25000, Y = X is used for the simulations at 
Ra = 12000 and 15000. This choice was motivated by the fact that, when we used 
the relation Y = 0.7X for a long-time simulation at Ra = 12000, the rolls simply 
flip over by 90" (so they are aligned with the X-axis) and periodic motion ensues. 
Although there is a fairly wide dispersion in the roll wavelengths observed by Willis 
& Deardorff (1970), it seems reasonable to demand that the rolls have the mean 
experimental wavelength; by setting Y = X one ensures that this will be true. 
Lipps ( 1  976) used the same procedure in his simulation at  Rn = 25 000. 
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FIGURE 3. Time evolution of the velocity component v(&X, &Y,  &/2, t )  for rum with resolution 
M = N = 8, P = 16 et venous Rayleigh numbem over the last &Ta of the runs for (a)-(e) and 
for the lest 47d for (f). (a) Ra = 6500; ( b )  9000; (c) 10000; (d )  12000; (e) 15000; (f) 25000. 

The power spectrum shown in figure 4(a) reveals two distinct frequencies. The 
largest peak corresponds to a period equal to 0-31~d; and three harmonics of this 
peak are visible in the graph. Willis & Deardorff (1970) report a period equal to 
0.3276 for Ra = 6500. The good agreement may be fortuitous because of the un- 
certainty in the choice of Y and because of the experimental difficulty of observing 
the oscillations at Rayleigh numbers close to the oscillatory threshold. The second 
distinct frequency in figure 4(a) corresponds to a period equal to 0.086~d, and one 
beat frequency between the two basic frequencies is visible. The major peak is 350000 
times larger than the peak corresponding to the second frequency. For this reason, it 
is impossible to detect the second frequency in the time-evolution plot given in figure 
3 (a). 

The results for Ra = 9000 plotted in figure 4 (b) differ from those for Ra = 6500 in 
that there are broadband components. The spectrum at 9000 contains three distinct 
major peaks corresponding to periods equal to 1'13Td, 0.480rd and 0.256rd. The latter 
peak is the largest of the three, and agrees well with the value 0-27~d found by Willis 
& Deardorff. Lipps (1976) detected two distinct frequencies in his simulation at 
Ra = 9000, and estimated their values to be 0.24~d and 0.4576. It should be noted 
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FIGURE 4. Frequency power spectra of the velocity component whose time series is plotted in 
figure 3. The spectra obtained using data from the last 197, of the nu18 (127, for (f)). (a) 
Ra = 6500; (b)  9000; (c) 10000; (d )  12000; (e) 15000; (f) 25000. 

that his solutions were obtained for a somewhat different value of Y than ours, and 
this may account for the discrepancy. 

The spectrum for Ra = 10000 given in figure 4 (c) reveals two distinct peaks. How- 
ever, the plot given in figure 3(c) shows that the motion is time-periodic. Specifically, 
the waveform repeats itself exactly every eleven cycles of the fast oscillation. This is 
confirmed by inspection of the data used to  generate the graph. (See also the Poincar6 
map for this run given in figure 6 below and the phase-space portrait in figure 11 below.) 

Figures a(&!) reveal a progression to broader spectra as the Rayleigh number is 
increased to 25000. This is consistent with the experimental observations of Willis 
6 Deardorff. The contour plots in figure 2 show that spectral parity is broken for all 
the Rayleigh numbers above 6500. 

In  order to determine the role of the symmetry-breaking modes in the production 
of broadband frequency components, the simulations at Ra = 9000 and 15000 were 
repeated with the modes that violate the spectral-parity condition given in (3.8) and 
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FIGURE 5. Runs withspectral parity enforced. (a) ,  (c), (e): Ra = 9000. ( b ) ,  (4, (f): Ra = 15000. 
Isotachs of w in the midplane z = 0: (a) ,  (b). Time series of v($X,  $ Y ,  $42,  t): ( c ) ,  (d). Frequency 
spectra of v over the last 19 7d: (e), (f). 

(3.9) set equal to zero. The results are shown in figure 5. The isotachs of w plotted in 
figure 5 (a)  show that spectral parity holds because of the antisymmetry with respect 
to translations by iX in the x-direction (along the ordinate in the graph). This trans- 
lational antisymmetry appears in the data for the velocity components and tempera- 
ture at points separated by + X  in the x-direction in the plane z = 0. Although the time 
series in figure 5 ( b )  is not quite periodic, it is much less chaotic than the series shown in 
figure 3 (e). It is clear that one can seriously underestimate the threshold for chaotic 
behaviour if one uses simulations in which spectral parity is imposed. A more important 
conclusion that can be drawn from the results plotted in figure 5 is that the symmetry- 
breaking modes are the cause of, rather than the result of, the onset of chaos. This result 
is not obvious a priori because it is conceivable that the symmetrized solutions could 
have a threshold for chaotic motion at the observed threshold, and that, once in a 
state of chaotic motion, they could destabilize the symmetry-breaking modes, thus 
drawing them into the motion. 

Lipps (1976) has made an interesting observation which may help to interpret the 
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role of the modes that break spectral parity in generating new frequencies in the flow. 
He pointed out that, in his simulation at  Ra = 9000, travelling-wave disturbances on 
adjacent rolls had different strengths and, as a consequence, travelled at different 
speeds. The fact that the disturbances had different strengths on adjacent rolls 
implies that spectral parity was also broken in his simulation (i.e. the velocity com- 
ponents and temperature are no longer symmetric or antisymmetric with respect to 
translations by 4X in the x-direction). It appears that the symmetry-breaking modes 
produce a modulation of the rolls which produces a new frequency in the flow. Since 
according to the Ruelle-Takens theory it is unusual to find a quasiperiodic flow with 
more than two distinct frequencies, the role of symmetry-breaking modes in producing 
new frequencies is important in the generation of early chaos. 

In  figure 6, we give two surface-of-section plots (Poincarb maps) at  Ra = 10000. 
In one surface of section we plot the values of w and 0 at x = IX, y = 0, z = 0 at 
those instants when u = 0 with &/at > 0 at  x = y = z = 0. In  the other surface-of- 
section plot included in figure 6, we plot the values of u(0, 0,  0, t )  ws. w ( ) X ,  0,  0,  t )  when 
v = 0 with &/at > 0 at x = i X ,  y = t Y ,  z = 2/4. Apparently, when Ra = 10000, the 
points of the surfaces of section are a finite number of discrete points, attesting to the 
periodic nature of the flow. On the other hand, the surface-of-section plot given in 
figure 7 a t  Ra = 15000 indicates a random orbit in the sense that the points are scat- 
tered in an apparently random and chaotic way. In this latter figure, the values of 
w and 0 are plotted at x = ax, y = z = 0 a t  those instants of time when u(0, 0, 0, t )  = 0 
and &/at > 0. 

In  figures 8-12 we plot projections of the time-dependent orbits on two-dimensional 
phase planes. When Ra = 6500 the orbits are clearly time-periodic (see figure 8). In 
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FIQURE 8. A plot of three representative projections of the flo-.v at  Ra = 6500 onto a two- 
dimensional phase space. Observe the periodic character of the flow. This plot is made using 
data from the last 6~~ of the run. 
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FIQURE 9. A plot of three representative projections of the flow at Ra = 9000 in which spectral 
parity is enforced. The projections are made onto a two-dimensional phase plane. Observe the 
periodic character of the flow. This plot is made using data from the last 6~~ of the run. 
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FIGURE 10. A plot of w(&X,  0, 0 )  v8. O($X, 0,  0) for the run a t  Ra = 9000 in which spectral 
parity is not enforced. This plot is made using data from the last 67, of the run. 



140 J .  B. McLaughlin, and S. A .  Orszag 

-5000 I 
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FIGURE 12. A plot of u(0, 0, 0) us. O(pX, 0, 0) for the run at Ra = 15000 over 
the last 6rd of the run. 
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figure 9, two-dimensional orbits are plotted for the run at  Ra = 9000 with the spectral 
symmetries (see figure 4) imposed. Apparently this orbit is time-periodic. On the 
other hand, when the symmetries are not imposed the orbit at  Ra = 9000 plotted in 
figure 10 shows some weakly strange behaviour, in which the orbit is not quite periodic 
and may be weakly chaotic. The orbit plotted in figure 11 at Ra = 10000 shows 
nearly periodic behaviour. Finally, the two-dimensional orbit plotted in figure 12 at 
Ra = 15000 shows the chaotic nature of this orbit. 

In  summary, our simulations of convection in air demonstrate periodic, quasi- 
periodic and chaotic behaviour in the range of Rayleigh numbers between 6500 and 
25000. Our results appear to be consistent with the Ruelle-Takens theory in that 
simulated flows that contain three or more distinct frequencies also contain broadband 
frequency components. 
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